Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Numerical analysis of the grout injection conducted in the ventilation shaft of the Horonobe Underground Research Laboratory

Nakashima, Hiroyoshi*; Koyama, Tomofumi*; Tatsuta, Keisuke*; Katayama, Tatsuo*; Aoyagi, Kazuhei

Dai-14-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (Internet), 6 Pages, 2017/01

In this study, we created the three dimensional model based on equivalent continuum approach to study the penetration length and enhancement of the hydraulic conductivity of the rock mass. The developed numerical model was applied to the in situ grout injection conducted in the ventilation shaft of the Horonobe Underground Research Laboratory. We evaluated the hydraulic conductivity of the rock mass after the grout operation. As a result, hydraulic conductivity of the highly permeable fault was decreased in 4 orders of magnitude, which is almost consistent with the in situ hydraulic conductivity obtained from in situ Luegeon test after the grout injection. Thus the simulation method described in this paper can be applied to the evaluation of the efficiency of in situ grout injection.

Journal Articles

Post-grouting experiences for reducing groundwater inflow at 500 m depth of the Mizunami Underground Research Laboratory, Japan

Tsuji, Masakuni*; Kobayashi, Shinji*; Mikake, Shinichiro; Sato, Toshinori; Matsui, Hiroya

Procedia Engineering, 191, p.543 - 550, 2017/00

 Times Cited Count:11 Percentile:92.43(Mining & Mineral Processing)

This paper shows the application of two post-grouting works to a gallery at 500 m depth of Mizunami Underground Research Laboratory in Japan. Three new grouting concepts were applied to the post-grouting works; a new grout material, a new injection system, and a new post-grouting zone. As for a grout material, "durable liquid-type colloidal silica grout (CSG)" was applied to seal the narrow fractures. As for an injection system, "complex dynamic grouting method" was applied to improve the penetrability of the grout material. The grouting works were successful in reducing the abundant water inflow from the rock mass with many fractures.

Journal Articles

Post-grouting with colloidal silica at great depth of the Mizunami Underground Research Laboratory, Japan

Tsuji, Masakuni*; Kobayashi, Shinji*; Sato, Toshinori; Mikake, Shinichiro; Matsui, Hiroya

Proceedings of 8th Nordic Grouting Symposium, p.171 - 185, 2016/09

This paper presents the application of a durable liquid-type colloidal silica grout (CSG), to the great depth of the Mizunami Underground Research Laboratory (MIU). The CSG had been invented decades ago in Japan for the purpose of the ground improvement. A post-grouting experiment with the CSG carried out in 300 m depth of MIU confirmed its applicability and good durability at a great depth more than 3 years. Furthermore, a comparison study of applying the CSG between this experiment and a Swedish project indicated good applicability of the Swedish theoretical design to MIU. The CSG with the Swedish design were applied to the post-grouting campaign in a gallery at 500 m depth for further reducing water ingress and for developing the latest grouting methodology. The grouting was successful in reducing the abundant inflow from the rock with many fractures. The conductivity of the grouted rock mass of the latter fans is estimated to be lower than 10$$^{-9}$$ m/s.

JAEA Reports

Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2014); Development of design and construction planning and countermeasure technologies (Contract research)

Kobayashi, Shinji*; Niimi, Katsuyuki*; Tsuji, Masakuni*; Yamada, Toshiko*; Aoyagi, Yoshiaki; Sato, Toshinori; Mikake, Shinichiro; Osawa, Hideaki

JAEA-Technology 2015-039, 170 Pages, 2016/02

JAEA-Technology-2015-039.pdf:37.73MB

The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) plan consists of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security, and (5) development of technologies regarding restoration or reversal and mitigating of the excavation effect. To develop design and construction planning technologies, and countermeasure technology, the analysis of measured data during earthquake and seismic movement characteristics at deep underground, and the examination of grouting method were carried out. For the characteristics of earthquake ground motion, measurement data obtained by seismometers installed in the Mizunami Underground Laboratory were analyzed, and the comprehensive assessment of the relationship between the measurement data and the geological condition at each depth was performed. As for "Study on grouting method at deep underground ", post grouting was carried out and evaluated based on the Construction plan in FY2013. Furthermore, target of the future R&D was proposed.

Oral presentation

Mizunami Underground Research Laboratory Project, Development of Engineering Technology for Underground Construction; Results and Evaluation for Post-excavation Grouting

Mikake, Shinichiro; Ikeda, Koki; Watanabe, Kazuhiko; Shiba, Nobuyuki; Kadoguchi, Yoshiaki; Tsuji, Masakuni*; Kusano, Takashi*; Kurita, Kazuaki*

no journal, , 

no abstracts in English

5 (Records 1-5 displayed on this page)
  • 1